Search results
Results from the WOW.Com Content Network
Convection occurs on a large scale in atmospheres, oceans, planetary mantles, and it provides the mechanism of heat transfer for a large fraction of the outermost interiors of the Sun and all stars. Fluid movement during convection may be invisibly slow, or it may be obvious and rapid, as in a hurricane .
Heat is transferred outward from the Sun's core by radiation rather than by convection (see Radiative zone below), so the fusion products are not lifted outward by heat; they remain in the core, [56] and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse ...
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
This solar cycle affects solar irradiation and influences space weather, terrestrial weather, and climate. The solar cycle also modulates the flux of short-wavelength solar radiation, from ultraviolet to X-ray and influences the frequency of solar flares, coronal mass ejections and other solar eruptive phenomena.
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
The core produces almost all of the Sun's heat via fusion; the rest of the star is heated by the outward transfer of heat from the core. The energy produced by fusion in the core, except a small part carried out by neutrinos , must travel through many successive layers to the solar photosphere before it escapes into space as sunlight , or else ...
The Sun rotates slowly enough that a spherical, non-rotating model is close enough to reality for deriving the rotational kernels. Helioseismology has shown that the Sun has a rotation profile with several features: [47] a rigidly-rotating radiative (i.e. non-convective) zone, though the rotation rate of the inner core is not well known;
Likewise, if the amount of heat being applied to coronal material is slightly reduced, the material very rapidly cools down past the temperature catastrophe to around one hundred thousand kelvin, and is said to have condensed. The transition region consists of material at or around this temperature catastrophe.