Search results
Results from the WOW.Com Content Network
In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
The Banach space (X, ǁ ⋅ ǁ) is a strictly convex space (i.e., the boundary of the unit ball B contains no line segments) if and only if δ(2) = 1, i.e., if only antipodal points (of the form x and y = −x) of the unit sphere can have distance equal to 2.
The concept of strong convexity extends and parametrizes the notion of strict convexity. Intuitively, a strongly-convex function is a function that grows as fast as a quadratic function. [11] A strongly convex function is also strictly convex, but not vice versa.
The two distinguished points are examples of extreme points of a convex set that are not exposed In mathematics, an exposed point of a convex set C {\displaystyle C} is a point x ∈ C {\displaystyle x\in C} at which some continuous linear functional attains its strict maximum over C {\displaystyle C} . [ 1 ]
It shows that any weakly convergent sequence in a normed space has a sequence of convex combinations of its members that converges strongly to the same limit, and is used in the proof of Tonelli's theorem.
The product of two CW complexes can be made into a CW complex. Specifically, if X and Y are CW complexes, then one can form a CW complex X × Y in which each cell is a product of a cell in X and a cell in Y, endowed with the weak topology. The underlying set of X × Y is then the Cartesian product of X and Y, as expected.
In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at ...
A plane curve is called convex if it has a supporting line through each of its points. [8] [9] For example, the graph of a convex function has a supporting line below the graph through each of its points. More strongly, at the points where the function has a derivative, there is exactly one supporting line, the tangent line. [10]