Search results
Results from the WOW.Com Content Network
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
The quaternions are a non-commutative extension of the complex numbers which have numerous applications in mathematics, physics, and computer graphics The main article for this category is Quaternion .
A quaternion of the form a + 0 i + 0 j + 0 k, where a is a real number, is called scalar, and a quaternion of the form 0 + b i + c j + d k, where b, c, and d are real numbers, and at least one of b, c, or d is nonzero, is called a vector quaternion. If a + b i + c j + d k is any quaternion, then a is called its scalar part and b i + c j + d k ...
Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F [1] [2] that has dimension 4 over F.Every quaternion algebra becomes a matrix algebra by extending scalars (equivalently, tensoring with a field extension), i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field.. A quaternionic structure is a triple (G, Q, q) where G is an elementary abelian group of exponent 2 with a distinguished element −1, Q is a pointed set with distinguished element 1, and q is a symmetric surjection G×G → Q satisfying axioms
Note that F is stable under the rotation q → p −1 qp and under the translation (1 + εr)(1 + εs) = 1 + ε(r + s) for any vector quaternions r and s. F is a 3-flat in the eight-dimensional space of dual quaternions. This 3-flat F represents space, and the homography constructed, restricted to F, is a screw displacement of space.
When the initial end point is the identity quaternion, slerp gives a segment of a one-parameter subgroup of both the Lie group of 3D rotations, SO(3), and its universal covering group of unit quaternions, S 3. Slerp gives a straightest and shortest path between its quaternion end points, and maps to a rotation through an angle of 2Ω.