Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google. The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [ 1 ]
Face detection can be used as part of a software implementation of emotional inference. Emotional inference can be used to help people with autism understand the feelings of people around them. [8] AI-assisted emotion detection in faces has gained significant traction in recent years, employing various models to interpret human emotional states.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes.
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
Face recognition has been leveraged as a form of biometric authentication for various computing platforms and devices; [37] Android 4.0 "Ice Cream Sandwich" added facial recognition using a smartphone's front camera as a means of unlocking devices, [66] [67] while Microsoft introduced face recognition login to its Xbox 360 video game console ...
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Finding facial landmarks is an important step in facial identification of people in an image. Facial landmarks can also be used to extract information about mood and intention of the person. [ 1 ] Methods used fall in to three categories: holistic methods, constrained local model methods, and regression -based methods.
A Tutorial on Face Recognition Using Eigenfaces and Distance Classifiers; Matlab example code for eigenfaces; OpenCV + C++Builder6 implementation of PCA; Java applet demonstration of eigenfaces Archived 2011-11-01 at the Wayback Machine; Introduction to eigenfaces; Face Recognition Function in OpenCV; Eigenface-based Facial Expression ...