Search results
Results from the WOW.Com Content Network
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
Convex function - a function in which the line segment between any two points on the graph of the function lies above the graph. Closed convex function - a convex function all of whose sublevel sets are closed sets. Proper convex function - a convex function whose effective domain is nonempty and it never attains minus infinity. Concave ...
Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .
For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.
Examples of classes of functions with a rich structure are, in addition to the convex functions, the subharmonic functions and the plurisubharmonic functions. Geometrically, these classes of functions correspond to convex domains and pseudoconvex domains, but there are also other types of domains, for instance lineally convex domains which can ...
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
A plane curve is called convex if it has a supporting line through each of its points. [8] [9] For example, the graph of a convex function has a supporting line below the graph through each of its points. More strongly, at the points where the function has a derivative, there is exactly one supporting line, the tangent line. [10]
For example, a solid cube is convex; however, anything that is hollow or dented, for example, a crescent shape, is non‑convex. Trivially, the empty set is convex. More formally, a set Q is convex if, for all points v 0 and v 1 in Q and for every real number λ in the unit interval [0,1], the point (1 − λ) v 0 + λv 1. is a member of Q.