enow.com Web Search

  1. Ad

    related to: stochastic differential equations evans and davis 11th grade

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  3. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...

  4. Lawrence C. Evans - Wikipedia

    en.wikipedia.org/wiki/Lawrence_C._Evans

    Lawrence Craig Evans (born November 1, 1949) is an American mathematician and Professor of Mathematics at the University of California, Berkeley.. His research is in the field of nonlinear partial differential equations, primarily elliptic equations.

  5. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...

  6. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis (the extension of calculus to stochastic processes ) and of differential geometry .

  7. Stochastic processes and boundary value problems - Wikipedia

    en.wikipedia.org/wiki/Stochastic_processes_and...

    Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .

  8. Doléans-Dade exponential - Wikipedia

    en.wikipedia.org/wiki/Doléans-Dade_exponential

    Natural exponential of a semimartingale can always be written as a stochastic exponential of another semimartingale but not the other way around. Stochastic exponential of a local martingale is again a local martingale. All the formulae and properties above apply also to stochastic exponential of a complex-valued . This has application in the ...

  9. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    A stochastic process S t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): = + where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

  1. Ad

    related to: stochastic differential equations evans and davis 11th grade