Search results
Results from the WOW.Com Content Network
Average volume of a lymphocyte: 3.3 × 10 −16: Mean volume of a neutrophil granulocyte: 4.2 × 10 −16: Volume of an average monocyte: 1 × 10 −15: One picolitre 2–9 × 10 −15: One drop from a high resolution colour inkjet printer: 1.3 × 10 −13: a very fine grain of sand (0.063 mm diameter, 3 micrograms) 1 × 10 −12: One nanolitre ...
Measurement of volume by displacement, (a) before and (b) after an object has been submerged. The amount by which the liquid rises in the cylinder (∆V) is equal to the volume of the object. In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the ...
In the treatise by this name, written c. 225 BCE, Archimedes obtained the result of which he was most proud, namely obtaining the formulas for the volume and surface area of a sphere by exploiting the relationship between a sphere and its circumscribed right circular cylinder of the same height and diameter. The sphere has a volume two-thirds ...
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
The weight of the object in the fluid is reduced, because of the force acting on it, which is called upthrust. In simple terms, the principle states that the buoyant force (F b) on an object is equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume (V) times the gravity (g) [1] [3]
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
1 dm 3 = 0.001 m 3 = 1 L (also known as DCM (=Deci Cubic Meter) in Rubber compound processing) Cubic centimetre [5] the volume of a cube of side length one centimetre (0.01 m) equal to a millilitre 1 cm 3 = 0.000 001 m 3 = 10 −6 m 3 = 1 mL Cubic millimetre the volume of a cube of side length one millimetre (0.001 m) equal to a microlitre
where is the specific energy, is the specific volume, is the specific entropy, is the molecular mass, here is considered a constant (polytropic process), and can be shown to correspond to the heat capacity ratio. This equation can be shown to be consistent with the usual equations of state employed by thermodynamics.