Search results
Results from the WOW.Com Content Network
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category. A model category is a category with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms.
In general relativity, the equivalence principle is the equivalence of gravitational and inertial mass. At the core of this assertion is Albert Einstein's idea that the gravitational force as experienced locally while standing on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non- inertial (i ...
According to Newton's law of gravity, and independently verified by experiments such as that of Eötvös and its successors (see Eötvös experiment), there is a universality of free fall (also known as the weak equivalence principle, or the universal equality of inertial and passive-gravitational mass): the trajectory of a test body in free ...
Because "local Lorentz invariance" (LLI) also holds in freely falling frames, experiments concerning the weak Equivalence principle belong to this class of tests as well. The outcomes are analyzed by test theories (as mentioned above) like RMS or, more importantly, by SME. [3]
Constraints on this, and on the existence of a composition-dependent fifth force or gravitational Yukawa interaction are very strong, and are discussed under fifth force and weak equivalence principle. A version of the equivalence principle, called the strong equivalence principle, asserts that self-gravitation falling bodies, such as stars ...
η is a parameter used to test the maximum allowable violation of the Weak Equivalence Principle. The first tests of the Weak Equivalence Principle were done by Eötvös before 1900 and limited η to less than 5 × 10 −9. Modern tests have reduced that to less than 5 × 10 −13. The second is Lorentz invariance.
In other projects Wikidata item; ... In mathematics, weak equivalence may refer to: Weak equivalence of categories; ... Weak equivalence principle