Search results
Results from the WOW.Com Content Network
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.
The transonic speed range is that range of speeds within which the airflow over different parts of an aircraft is between subsonic and supersonic. So the regime of flight from Mcrit up to Mach 1.3 is called the transonic range. Supersonic: 1.2–5.0 794–3,308 915–3,806 1,470–6,126 410–1,702
A subsonic aircraft is an aircraft with a maximum speed less than the speed of sound (Mach 1). The term technically describes an aircraft that flies below its critical Mach number, typically around Mach 0.8. All current civil aircraft, including airliners, helicopters, future passenger drones, personal air vehicles and airships, as well as many ...
Subsonic flows are often idealized as incompressible, i.e. the density is assumed to be constant. Transonic and supersonic flows are compressible, and calculations that neglect the changes of density in these flow fields will yield inaccurate results. Viscosity is associated with the frictional forces in a flow.
The transonic speed range is that range of speeds within which the airflow over different parts of an aircraft is between subsonic and supersonic. So the regime of flight from Mcrit up to Mach 1.3 is called the transonic range. [citation needed] Northrop X-4 Bantam (Mach 0.9) — Supersonic [1.2–5) 921–3,836 mph (1,482–6,173 km/h; 412 ...
When an aircraft travels at subsonic speeds, the sound waves that it normally creates can travel in all directions; at supersonic speeds, however, the aircraft will leave its own sound behind and ...
Its inaugural flight — 60 years ago in September 1964 — kicked off a golden era for supersonic aircraft. The plane would later achieve a speed of just over 2,000 miles per hour, nearly 50% ...
In these transonic speed ranges, compressibility causes a change in the density of the air around an airplane. During flight, a wing produces lift by accelerating the airflow over the upper surface. This accelerated air can, and does, reach supersonic speeds, even though the airplane itself may be flying at a subsonic airspeed (Mach number < 1.0