Search results
Results from the WOW.Com Content Network
[1] More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved. In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad ...
This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...
In mathematics, a minimal counterexample is the smallest example which falsifies a claim, and a proof by minimal counterexample is a method of proof which combines the use of a minimal counterexample with the ideas of proof by induction and proof by contradiction. [1] [2] More specifically, in trying to prove a proposition P, one first assumes ...
In which case, if P 1 (S) is the set of one-element subsets of S and f is a proposed bijection from P 1 (S) to P(S), one is able to use proof by contradiction to prove that |P 1 (S)| < |P(S)|. The proof follows by the fact that if f were indeed a map onto P(S), then we could find r in S, such that f({r}) coincides with the modified diagonal set ...
Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.
A nonconstructive proof establishes that a mathematical object with a certain property exists—without explaining how such an object can be found. Often, this takes the form of a proof by contradiction in which the nonexistence of the object is proved to be impossible.
For the claim that F 1 is consistent has form "for all numbers n, n has the decidable property of not being a code for a proof of contradiction in F 1". If F 1 were in fact inconsistent, then F 2 would prove for some n that n is the code of a contradiction in F 1.
In mathematics there is the concept of proof of impossibility referring to problems impossible to solve. The difference between this impossibility and that of the no-go theorems is that a proof of impossibility states a category of logical proposition that may never be true; a no-go theorem instead presents a sequence of events that may never occur.