Search results
Results from the WOW.Com Content Network
By a direct calculation with the matrix defining the shape operator, it can be checked that the Gaussian curvature is the determinant of the shape operator, the mean curvature is half of the trace of the shape operator, and the principal curvatures are the eigenvalues of the shape operator; moreover the Gaussian curvature is the product of the ...
The Gauss map can always be defined locally (i.e. on a small piece of the surface). The Jacobian determinant of the Gauss map is equal to Gaussian curvature, and the differential of the Gauss map is called the shape operator. Gauss first wrote a draft on the topic in 1825 and published in 1827. [1] [citation needed]
The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...
Via the first fundamental form, it can also be viewed as a (1,1)-tensor field on S, where it is known as the shape operator. The Gaussian curvature or Gauss–Kronecker curvature of f, denoted by K, can then be defined as the point-by-point determinant of the shape operator, or equivalently (relative to local coordinates) as the determinant of ...
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss.First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin.
The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".
The third fundamental form is expressible entirely in terms of the first fundamental form and second fundamental form.If we let H be the mean curvature of the surface and K be the Gaussian curvature of the surface, we have