enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged. Gauss's original statement of the Theorema Egregium, translated from Latin into English.

  3. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    Gauss's Theorema egregium (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the first fundamental form and expressed via the first fundamental form and its partial derivatives of first and second ...

  4. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Gauss's original statement of the Theorema Egregium, translated from Latin into English. Gauss's Theorema Egregium , the "Remarkable Theorem", shows that the Gaussian curvature of a surface can be computed solely in terms of the metric and is thus an intrinsic invariant of the surface, independent of any isometric embedding in E 3 and unchanged ...

  6. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.

  7. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Chern–Gauss–Bonnet theorem (differential geometry) Classification of symmetric spaces ; Darboux's theorem (symplectic topology) Euler's theorem (differential geometry) Four-vertex theorem (differential geometry) Frobenius theorem ; Gauss's lemma (riemannian geometry) Gauss's Theorema Egregium (differential geometry)

  8. Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Bonnet_theorem

    An example of a complex region where Gauss–Bonnet theorem can apply. Shows the sign of geodesic curvature. In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology.

  9. Riemann curvature tensor - Wikipedia

    en.wikipedia.org/wiki/Riemann_curvature_tensor

    The concept of a curved space in mathematics differs from conversational usage. For example, if the above process was completed on a cylinder one would find that it is not curved overall as the curvature around the cylinder cancels with the flatness along the cylinder, which is a consequence of Gaussian curvature and Gauss's Theorema Egregium ...