Search results
Results from the WOW.Com Content Network
Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous argument; however, it may have been obtained by sampling from a continuous-time signal. When a discrete-time signal is obtained by sampling a sequence at uniformly spaced times, it has an associated sampling rate. Discrete-time signals may have several ...
A computer is a finite-state machine that may be viewed as a discrete system. Because computers are often used to model not only other discrete systems but continuous systems as well, methods have been developed to represent real-world continuous systems as discrete systems. One such method involves sampling a continuous signal at discrete time ...
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
The discrete-time Fourier transform, on the other hand, maps functions with discrete time (discrete-time signals) to functions that have a continuous frequency domain. [2] [3] A periodic signal has energy only at a base frequency and its harmonics; thus it can be analyzed using a discrete frequency domain. A discrete-time signal gives rise to a ...
The definition for discrete-time systems is almost identical to that for continuous-time systems. The definition below provides this, using an alternate language commonly used in more mathematical texts. Let (X, d) be a metric space and f : X → X a continuous function. A point x in X is said to be Lyapunov stable, if,
The time variable can be continuous (e.g. ) or discrete (e.g. ). In the latter case, the time variable is usually used instead of . Hybrid systems allow for time domains that have both continuous and discrete parts. Depending on the assumptions made, the state-space model representation can assume the following forms:
The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers.