Search results
Results from the WOW.Com Content Network
Alternatively, the conversion can be considered as two sequential rectangular to polar conversions: the first in the Cartesian xy plane from (x, y) to (R, φ), where R is the projection of r onto the xy-plane, and the second in the Cartesian zR-plane from (z, R) to (r, θ).
The complex number z can be represented in rectangular form as = + where i is the imaginary unit, or can alternatively be written in polar form as = ( + ) and from there, by Euler's formula, [14] as = = . where e is Euler's number, and φ, expressed in radians, is the principal value of the complex number function arg applied to x + iy ...
As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range of 180°, running from 0° to 180°, and does not pose any problem when calculated from an arccosine, but beware for an arctangent.
The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.
In the cylindrical coordinate system, a z-coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple (r, θ, z). [8] Spherical coordinates take this a step further by converting the pair of cylindrical coordinates (r, z) to polar coordinates (ρ, φ) giving a triple (ρ, θ, φ). [9]
The radius and the azimuth are together called the polar coordinates, as they correspond to a two-dimensional polar coordinate system in the plane through the point, parallel to the reference plane. The third coordinate may be called the height or altitude (if the reference plane is considered horizontal), longitudinal position , [ 1 ] or axial ...
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
Conversions: Decimal degrees, radians or grads ↔ degrees–min.–sec. Rectangular coordinates ↔ polar coordinates. Conversion units: cm/in, kg/lb, ltr/gal