enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Load factor (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Load_factor_(aeronautics)

    is the weight. Since the load factor is the ratio of two forces, it is dimensionless. However, its units are traditionally referred to as g, because of the relation between load factor and apparent acceleration of gravity felt on board the aircraft. A load factor of one, or 1 g, represents conditions in straight and level flight, where the lift ...

  3. Center of gravity of an aircraft - Wikipedia

    en.wikipedia.org/wiki/Center_of_gravity_of_an...

    The amount a weight must be moved can be found by using the following formula shift distance = (total weight * cg change) / weight shifted Example: 1500 lb * 33.9 in = 50,850 moment (airplane) 100 lb * 68 in = 8,400 moment (baggage) cg = 37 in = (50,850 + 8,400) / 1600 lb (1/2 in out of cg limit)

  4. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    The aerodynamic efficiency has a maximum value, E max, respect to C L where the tangent line from the coordinate origin touches the drag coefficient equation plot. The drag coefficient, C D , can be decomposed in two ways.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Aircraft flight mechanics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_mechanics

    Weight acts through the aircraft's centre of gravity, towards the centre of the Earth. In straight and level flight, lift is approximately equal to the weight, and acts in the opposite direction. In addition, if the aircraft is not accelerating, thrust is equal and opposite to drag. [3] In straight climbing flight, lift is less than weight. [4]

  7. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.

  8. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]

  9. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    When flying straight and level at 1 g, the pilot is acted upon by the force of gravity. His weight (a downward force) is 725 newtons (163 lb f). In accordance with Newton's third law, the plane and the seat underneath the pilot provides an equal and opposite force pushing upwards with a force of 725 N.