Ad
related to: linear pair theorem example problems
Search results
Results from the WOW.Com Content Network
In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968.
The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete [2] [3]: MP1 Some problems related to Job-shop scheduling; Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling
The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.
A complementarity problem is a type of mathematical optimization problem. It is the problem of optimizing (minimizing or maximizing) a function of two vector variables subject to certain requirements (constraints) which include: that the inner product of the two vectors must equal zero, i.e. they are orthogonal. [ 1 ]
The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953), who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O(V 4).
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).
The Riemann–Hilbert problem is to find a pair of ... The most celebrated example is the theorem of ... Isomonodromic Deformations of Systems of Linear ...
Ad
related to: linear pair theorem example problems