enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    For regularized least squares the square loss function is introduced: = = (, ()) = = (()) However, if the functions are from a relatively unconstrained space, such as the set of square-integrable functions on X {\displaystyle X} , this approach may overfit the training data, and lead to poor generalization.

  3. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    When learning a linear function , characterized by an unknown vector such that () =, one can add the -norm of the vector to the loss expression in order to prefer solutions with smaller norms. Tikhonov regularization is one of the most common forms.

  4. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    It's also important to apply feature scaling if regularization is used as part of the loss function (so that coefficients are penalized appropriately). Empirically, feature scaling can improve the convergence speed of stochastic gradient descent. In support vector machines, [2] it can reduce the time to find support vectors. Feature scaling is ...

  6. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  7. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  8. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]

  9. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...