Search results
Results from the WOW.Com Content Network
These problems, spanning many areas of mathematics, formed a central focus for much of 20th-century mathematics. Today, 10 have been solved, 7 are partially solved, and 2 are still open. The remaining 4 are too loosely formulated to be stated as solved or not. [citation needed] A map illustrating the Four Color Theorem
German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theory also studies the natural, or whole, numbers. One of the central concepts in number theory is that of the prime number , and there are many questions about primes that appear simple but whose ...
Under Cobham's thesis, a problem for which the best algorithm takes n 200 instructions is considered feasible, and a problem with an algorithm that takes 2 0.00001 n instructions infeasible—even though one could never solve an instance of size n = 2 with the former algorithm, whereas an instance of the latter problem of size n = 10 6 could be ...
A thesis (pl.: theses), or dissertation [note 1] (abbreviated diss.), [2] is a document submitted in support of candidature for an academic degree or professional qualification presenting the author's research and findings. [3] In some contexts, the word thesis or a cognate is used for part of a bachelor's or master's course, while dissertation ...
During the early modern period, mathematics began to develop at an accelerating pace in Western Europe, with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of logarithms by John Napier in 1614, which greatly simplified numerical ...
The History of Mathematics consists of seven chapters, [1] featuring many case studies. [2] [3] Its first, "Mathematics: myth and history", gives a case study of the history of Fermat's Last Theorem and of Wiles's proof of Fermat's Last Theorem, [4] making a case that the proper understanding of this history should go beyond a chronicle of individual mathematicians and their accomplishments ...
The Church–Turing Thesis: Stephen Kleene, in Introduction To Metamathematics, finally goes on to formally name "Church's Thesis" and "Turing's Thesis", using his theory of recursive realizability. Kleene having switched from presenting his work in the terminology of Church-Kleene lambda definability, to that of Gödel-Kleene recursiveness ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.