enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.

  3. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  5. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  6. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    requiring a conic to pass through a point imposes a linear condition on the coordinates: for a fixed (,), the equation + + + + + = is a linear equation in (,,,,,); by dimension counting , five constraints (that the curve passes through five points) are necessary to specify a conic, as each constraint cuts the dimension of possibilities by 1 ...

  7. Generalized conic - Wikipedia

    en.wikipedia.org/wiki/Generalized_conic

    In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of some defining property of the classical conic.For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant.

  8. Conic constant - Wikipedia

    en.wikipedia.org/wiki/Conic_constant

    In geometry, the conic constant (or Schwarzschild constant, [1] after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter K. The constant is given by K = − e 2 , {\displaystyle K=-e^{2},} where e is the eccentricity of the conic section.

  9. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a ...