enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Potentially all pairwise rankings of all possible alternatives

    en.wikipedia.org/wiki/Potentially_all_pairwise...

    The PAPRIKA method pertains to value models for ranking particular alternatives that are known to decision-makers (e.g. as in the job candidates example above) and also to models for ranking potentially all hypothetically possible alternatives in a pool that is changing over time (e.g. patients presenting for medical care).

  3. Ranking - Wikipedia

    en.wikipedia.org/wiki/Ranking

    Thus if A ranks ahead of B and C (which compare equal) which are both ranked ahead of D, then A gets ranking number 1 ("first"), B gets ranking number 2 ("joint second"), C also gets ranking number 2 ("joint second") and D gets ranking number 4 ("fourth"). This method is called "Low" by IBM SPSS [4] and "min" by the R programming language [5 ...

  4. Best, worst and average case - Wikipedia

    en.wikipedia.org/wiki/Best,_worst_and_average_case

    In computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of ...

  5. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    The nDCG values for all queries can be averaged to obtain a measure of the average performance of a ranking algorithm. Note that in a perfect ranking algorithm, the will be the same as the producing an nDCG of 1.0. All nDCG calculations are then relative values on the interval 0.0 to 1.0 and so are cross-query comparable.

  6. Discounted cumulative gain - Wikipedia

    en.wikipedia.org/wiki/Discounted_cumulative_gain

    For example, if a query returns two results with scores 1,1,1 and 1,1,1,1,1 respectively, both would be considered equally good, assuming ideal DCG is computed to rank 3 for the former and rank 5 for the latter. One way to take into account this limitation is to enforce a fixed set size for the result set and use minimum scores for the missing ...

  7. Help:Cheatsheet - Wikipedia

    en.wikipedia.org/wiki/Help:Cheatsheet

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  8. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    The ranking SVM algorithm is a learning retrieval function that employs pairwise ranking methods to adaptively sort results based on how 'relevant' they are for a specific query. The ranking SVM function uses a mapping function to describe the match between a search query and the features of each of the possible results.

  9. Ranking (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Ranking_(information...

    Ranking of query is one of the fundamental problems in information retrieval (IR), [1] the scientific/engineering discipline behind search engines. [2] Given a query q and a collection D of documents that match the query, the problem is to rank, that is, sort, the documents in D according to some criterion so that the "best" results appear early in the result list displayed to the user.