enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...

  3. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Instead, the wave function must satisfy more complicated mathematical boundary conditions as it is nonzero in regions outside the well. Another related problem is that of the rectangular potential barrier , which furnishes a model for the quantum tunneling effect that plays an important role in the performance of modern technologies such as ...

  4. Born–von Karman boundary condition - Wikipedia

    en.wikipedia.org/wiki/Born–von_Karman_boundary...

    Born–von Karman boundary conditions are periodic boundary conditions which impose the restriction that a wave function must be periodic on a certain Bravais lattice. Named after Max Born and Theodore von Kármán, this condition is often applied in solid state physics to model an ideal crystal. Born and von Karman published a series of ...

  5. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    The time-independent Schrödinger equation for the wave function is ^ = [+ ()] = (), where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle. The step potential is simply the product of V 0 , the height of the barrier, and the Heaviside step function : V ( x ) = { 0 , x < 0 V 0 , x ≥ 0 ...

  6. Semicircular potential well - Wikipedia

    en.wikipedia.org/wiki/Semicircular_potential_well

    The condition m=0 is ruled out because = everywhere, meaning that the particle is not in the potential at all. Negative integers are also ruled out since they can easily be absorbed in the normalization condition. We then normalize the wave function, yielding a result where =. The normalized wave function is

  7. Bloch's theorem - Wikipedia

    en.wikipedia.org/wiki/Bloch's_theorem

    where is position, is the wave function, is a periodic function with the same periodicity as the crystal, the wave vector is the crystal momentum vector, is Euler's number, and is the imaginary unit. Functions of this form are known as Bloch functions or Bloch states , and serve as a suitable basis for the wave functions or states of electrons ...

  8. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().

  9. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.