enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector. In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions.

  3. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  4. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant ...

  5. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  6. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.

  7. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Using the hyperbolic sine and cosine functions,, a parametric representation of the hyperbola = can be obtained, which is similar to the parametric representation of an ellipse: (⁡, ⁡), , which satisfies the Cartesian equation because ⁡ ⁡ =

  8. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    Here, sinh is the hyperbolic sine function. This solution of the heat equation is obtained by multiplying each term of the equation from Analysis § Example by sinh ⁡ ( n y ) / sinh ⁡ ( n π ) {\displaystyle \sinh(ny)/\sinh(n\pi )} .

  9. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Hyperbolic functions in Euclidean geometry: The unit circle is parameterized by (cos t, sin t) whereas the equilateral hyperbola is parameterized by (cosh t, sinh t). Gyrotrigonometry : A form of trigonometry used in the gyrovector space approach to hyperbolic geometry , with applications to special relativity and quantum computation .