Search results
Results from the WOW.Com Content Network
A bone scan or bone scintigraphy / s ɪ n ˈ t ɪ ɡ r ə f i / is a nuclear medicine imaging technique used to help diagnose and assess different bone diseases. These include cancer of the bone or metastasis, location of bone inflammation and fractures (that may not be visible in traditional X-ray images), and bone infection (osteomyelitis).
A skeletal survey (also called a bone survey [1]) is a series of X-rays of all the bones in the body, or at least the axial skeleton and the large cortical bones. A very common use is the diagnosis of multiple myeloma , where tumour deposits appear as "punched-out" lesions.
Amyloid deposition in aortic stenosis shown by DPD scan. A DPD scan is a type of nuclear medicine imaging test which uses radioactive technetium-99m (99m Tc) and 3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) to diagnose cardiac amyloidosis.
DXA BMD results adjusted in this manner are referred to as the bone mineral apparent density (BMAD) and are a ratio of the bone mineral content versus a cuboidal estimation of the volume of bone. Like the results for aBMD, BMAD results do not accurately represent true bone mineral density, since they use approximations of the bone's volume.
Scintigraphy (from Latin scintilla, "spark"), also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and the emitted gamma radiation is captured by gamma cameras, which are external detectors that form two-dimensional images [1] in a process similar to the ...
Also known as a bone scan, bone scintigraphy involves the injection of a small amount of radioactive tracer into the bloodstream. This tracer decays and emits radioactive energy which can be detected by a special camera. The camera produces a black and white image where areas shown as dark black indicate bone damage of some kind.
DXA is only able to provide the areal bone mineral density. High-resolution peripheral quantitative computed tomography (HR-pQCT) is better than DXA at detecting bone microarchitecture, modeling whole-bone geometry using 3-dimensional information from scans. This method allows estimation of bone strength and other mechanical properties. [20]
The main (67 Ga) technique uses scintigraphy to produce two-dimensional images. After the tracer has been injected, images are typically taken by a gamma camera at 24, 48, and in some cases, 72, and 96 hours later. [21] [22] Each set of images takes 30–60 minutes, depending on the size of the area being imaged. The resulting image will have ...