enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    The Stoner–Wohlfarth model is a physical model explaining hysteresis in terms of anisotropic response ("easy" / "hard" axes of each crystalline grain). Micromagnetics simulations attempt to capture and explain in detail the space and time aspects of interacting magnetic domains, often based on the Landau-Lifshitz-Gilbert equation .

  3. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    In electromagnetism and materials science, the Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. [1] This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2]

  4. Preisach model of hysteresis - Wikipedia

    en.wikipedia.org/wiki/Preisach_model_of_hysteresis

    A sample of iron, for example, may have evenly distributed magnetic domains, resulting in a net magnetic moment of zero. Mathematically similar models seem to have been independently developed in other fields of science and engineering. One notable example is the model of capillary hysteresis in porous materials developed by Everett and co ...

  5. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    Hysteresis can be a dynamic lag between an input and an output that disappears if the input is varied more slowly; this is known as rate-dependent hysteresis. However, phenomena such as the magnetic hysteresis loops are mainly rate-independent, which makes a durable memory possible.

  6. Stoner–Wohlfarth model - Wikipedia

    en.wikipedia.org/wiki/Stoner–Wohlfarth_model

    Usually only the hysteresis loop is plotted; the energy maxima are only of interest if the effect of thermal fluctuations is calculated. [1] The Stoner–Wohlfarth model is a classic example of magnetic hysteresis. The loop is symmetric (by a 180 ° rotation) about the origin and jumps occur at h = ± h s, where h s is known as the switching field.

  7. Bean's critical state model - Wikipedia

    en.wikipedia.org/wiki/Bean's_critical_state_model

    Calculated magnetization curve for a superconducting slab, based on Bean's model. The superconducting slab is initially at H = 0. Increasing H to critical field H* causes the blue curve; dropping H back to 0 and reversing direction to increase it to -H* causes the green curve; dropping H back to 0 again and increase H to H* causes the orange curve.

  8. Exchange spring magnet - Wikipedia

    en.wikipedia.org/wiki/Exchange_spring_magnet

    Figure 1: The ideal magnetic hysteresis loop of an exchange spring magnet (dashed), as well as the hysteresis loops of its isolated hard (Blue) and soft (Red) components. H is the applied external magnetic field, M is the total magnetic flux density of the material.

  9. Ferrimagnetism - Wikipedia

    en.wikipedia.org/wiki/Ferrimagnetism

    When ferrimagnets are exposed to an external magnetic field, they display what is called magnetic hysteresis, where magnetic behavior depends on the history of the magnet. They also exhibit a saturation magnetization M rs {\displaystyle M_{\text{rs}}} ; this magnetization is reached when the external field is strong enough to make all the ...