enow.com Web Search

  1. Ad

    related to: orthogonal rewriting system of linear equations

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonality (term rewriting) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(term_rewriting)

    Orthogonality as a property of term rewriting systems (TRSs) describes where the reduction rules of the system are all left-linear, that is each variable occurs only once on the left hand side of each reduction rule, and there is no overlap between them, i.e. the TRS has no critical pairs.

  3. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    A term rewriting system is said to be orthogonal if it is left-linear and is non-ambiguous. Orthogonal term rewriting systems are confluent. In certain cases, the word normal is used to mean orthogonal, particularly in the geometric sense as in the normal to a surface.

  4. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other.

  5. Rewriting - Wikipedia

    en.wikipedia.org/wiki/Rewriting

    A term rewriting given by a set of rules can be viewed as an abstract rewriting system as defined above, with terms as its objects and as its rewrite relation. For example, x ∗ ( y ∗ z ) → ( x ∗ y ) ∗ z {\displaystyle x*(y*z)\rightarrow (x*y)*z} is a rewrite rule, commonly used to establish a normal form with respect to the ...

  6. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations). Reflections are transformations that reverse the direction front to back, orthogonal to the mirror plane, like (real-world) mirrors do.

  7. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    In mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized , the resulting basis is an orthonormal basis .

  8. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval as the domain , the bilinear form may be the integral of the product of functions over the interval:

  9. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Because a solution to a linear system must satisfy all of the equations, the solution set is the intersection of these lines, and is hence either a line, a single point, or the empty set. For three variables, each linear equation determines a plane in three-dimensional space, and the solution set is the intersection of these planes. Thus the ...

  1. Ad

    related to: orthogonal rewriting system of linear equations