Search results
Results from the WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The Stanford Research Institute Problem Solver, known by its acronym STRIPS, is an automated planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI International. [1] The same name was later used to refer to the formal language of the inputs to this planner.
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
General Problem Solver (GPS) is a computer program created in 1957 by Herbert A. Simon, J. C. Shaw, and Allen Newell (RAND Corporation) intended to work as a universal problem solver machine. In contrast to the former Logic Theorist project, the GPS works with means–ends analysis .
A problem statement is a description of an issue to be addressed, or a condition to be improved upon. It identifies the gap between the current problem and goal. The first condition of solving a problem is understanding the problem, which can be done by way of a problem statement. [1]
Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions ...
A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog.
First, it can be false in practice. A theoretical polynomial algorithm may have extremely large constant factors or exponents, rendering it impractical. For example, the problem of deciding whether a graph G contains H as a minor, where H is fixed, can be solved in a running time of O(n 2), [25] where n is the number of vertices in G.