enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  3. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    Hence, given the radius, r, center, P c, a point on the circle, P 0 and a unit normal of the plane containing the circle, ⁠ ^, ⁠ one parametric equation of the circle starting from the point P 0 and proceeding in a positively oriented (i.e., right-handed) sense about ⁠ ^ ⁠ is the following:

  4. Orthocentric system - Wikipedia

    en.wikipedia.org/wiki/Orthocentric_system

    Common nine-point circle, where N, O 4, A 4 are the nine-point center, circumcenter, and orthocenter respectively of the triangle formed from the other three orthocentric points A 1, A 2, A 3. The center of this common nine-point circle lies at the centroid of the four orthocentric points. The radius of the common nine-point circle is the ...

  5. Triangle center - Wikipedia

    en.wikipedia.org/wiki/Triangle_center

    In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.

  6. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The nine-point circles are all congruent with a radius of half that of the cyclic quadrilateral's circumcircle. The nine-point circles form a set of four Johnson circles. Consequently, the four nine-point centers are cyclic and lie on a circle congruent to the four nine-point circles that is centered at the anticenter of the cyclic quadrilateral.

  7. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) [2] Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle [3] and Lester's theorem.

  8. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    It has also rarely been called a double circle quadrilateral [2] and double scribed quadrilateral. [3] If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. [4]

  9. Nine-point center - Wikipedia

    en.wikipedia.org/wiki/Nine-point_center

    A triangle showing its circumcircle and circumcenter (black), altitudes and orthocenter (red), and nine-point circle and nine-point center (blue) In geometry , the nine-point center is a triangle center , a point defined from a given triangle in a way that does not depend on the placement or scale of the triangle.