enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Download as PDF; Printable version; In other projects ... move to sidebar hide. In mathematics, positive semidefinite may refer to: Positive semidefinite function ...

  3. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  4. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...

  5. Fidelity of quantum states - Wikipedia

    en.wikipedia.org/wiki/Fidelity_of_quantum_states

    The fidelity between two quantum states and , expressed as density matrices, is commonly defined as: [1] [2] (,) = (⁡).The square roots in this expression are well-defined because both and are positive semidefinite matrices, and the square root of a positive semidefinite matrix is defined via the spectral theorem.

  6. Copositive matrix - Wikipedia

    en.wikipedia.org/wiki/Copositive_matrix

    The class of copositive matrices can be characterized using principal submatrices. One such characterization is due to Wilfred Kaplan: [6]. A real symmetric matrix A is copositive if and only if every principal submatrix B of A has no eigenvector v > 0 with associated eigenvalue λ < 0.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If the quadratic form f yields only non-negative values (positive or zero), the symmetric matrix is called positive-semidefinite (or if only non-positive values, then negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and ...

  8. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).

  9. Loewner order - Wikipedia

    en.wikipedia.org/wiki/Loewner_order

    In mathematics, Loewner order is the partial order defined by the convex cone of positive semi-definite matrices. This order is usually employed to generalize the definitions of monotone and concave/convex scalar functions to monotone and concave/convex Hermitian valued functions. These functions arise naturally in matrix and operator theory ...