Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects ... move to sidebar hide. In mathematics, positive semidefinite may refer to: Positive semidefinite function ...
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every (), , and , , where is the domain of .
The Gram matrix is symmetric in the case the inner product is real-valued; it is Hermitian in the general, complex case by definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can ...
The fidelity between two quantum states and , expressed as density matrices, is commonly defined as: [1] [2] (,) = ().The square roots in this expression are well-defined because both and are positive semidefinite matrices, and the square root of a positive semidefinite matrix is defined via the spectral theorem.
The class of copositive matrices can be characterized using principal submatrices. One such characterization is due to Wilfred Kaplan: [6]. A real symmetric matrix A is copositive if and only if every principal submatrix B of A has no eigenvector v > 0 with associated eigenvalue λ < 0.
If the quadratic form f yields only non-negative values (positive or zero), the symmetric matrix is called positive-semidefinite (or if only non-positive values, then negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. A symmetric matrix is positive-definite if and ...
This implies that at a local minimum the Hessian is positive-semidefinite, and at a local maximum the Hessian is negative-semidefinite. For positive-semidefinite and negative-semidefinite Hessians the test is inconclusive (a critical point where the Hessian is semidefinite but not definite may be a local extremum or a saddle point).
In mathematics, Loewner order is the partial order defined by the convex cone of positive semi-definite matrices. This order is usually employed to generalize the definitions of monotone and concave/convex scalar functions to monotone and concave/convex Hermitian valued functions. These functions arise naturally in matrix and operator theory ...