enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in connection with their studies of the tautochrone problem. The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Joseph-Louis Lagrange was influenced by Euler's work to contribute significantly to the theory. After Euler saw the 1755 work of the 19-year-old Lagrange, Euler dropped his own partly geometric approach in favor of Lagrange's purely analytic approach and renamed the subject the calculus of variations in his 1756 lecture Elementa Calculi ...

  4. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5] In this book Lagrange starts with the Lagrangian specification but later converts them into the Eulerian specification. [5]

  5. Lagrangian system - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_system

    A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y.. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ (Y) of exterior forms on jet manifolds of Y → X.

  6. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    The calligraphic typeface, , is used to denote the density, and is the volume form of the field function, i.e., the measure of the domain of the field function. In mathematical formulations, it is common to express the Lagrangian as a function on a fiber bundle , wherein the EulerLagrange equations can be interpreted as specifying the ...

  7. Functional derivative - Wikipedia

    en.wikipedia.org/wiki/Functional_derivative

    A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the EulerLagrange equation : indeed, the functional derivative was introduced in physics within the derivation of the Lagrange equation of the second kind from the ...

  8. Averaged Lagrangian - Wikipedia

    en.wikipedia.org/wiki/Averaged_Lagrangian

    In case a Lagrangian formulation of a continuum mechanics system is available, the averaged Lagrangian methodology can be used to find approximations for the average dynamics of wave motion – and (eventually) for the interaction between the wave motion and the mean motion – assuming the envelope dynamics of the carrier waves is slowly varying.

  9. Harmonic map - Wikipedia

    en.wikipedia.org/wiki/Harmonic_map

    There is also a second variation formula. [17] Due to the first variation formula, the Laplacian of f can be thought of as the gradient of the Dirichlet energy; correspondingly, a harmonic map is a critical point of the Dirichlet energy. [18] This can be done formally in the language of global analysis and Banach manifolds.