enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  3. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.

  4. Point–line–plane postulate - Wikipedia

    en.wikipedia.org/wiki/Point–line–plane_postulate

    Intersecting planes assumption. If two different planes have a point in common, then their intersection is a line. The first three assumptions of the postulate, as given above, are used in the axiomatic formulation of the Euclidean plane in the secondary school geometry curriculum of the University of Chicago School Mathematics Project (UCSMP). [2]

  5. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...

  6. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    The plane part of this rotoreflection is the plane that is orthogonal to the line L and the original point P. A similar procedure can be used to find the line orthogonal to a plane and passing through a point, or the intersection of a line and a plane, or the intersection line of a plane with another plane.

  7. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

  8. Plane–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Planeplane_intersection

    This is found by noticing that the line must be perpendicular to both plane normals, and so parallel to their cross product (this cross product is zero if and only if the planes are parallel, and are therefore non-intersecting or entirely coincident).

  9. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    For a plane, the two angles are called its strike (angle) and its dip (angle). A strike line is the intersection of a horizontal plane with the observed planar feature (and therefore a horizontal line), and the strike angle is the bearing of this line (that is, relative to geographic north or from magnetic north). The dip is the angle between a ...