enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagonal lattice - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_lattice

    Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.

  3. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).

  4. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.

  5. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called primitive vectors. These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only.

  6. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    Let ,, be primitive translation vectors (shortly called primitive vectors) of a crystal lattice, where atoms are located at lattice points described by = + + with , , and as any integers. (So x {\displaystyle \mathbf {x} } indicating each lattice point is an integer linear combination of the primitive vectors.)

  7. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.

  8. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  9. Born–von Karman boundary condition - Wikipedia

    en.wikipedia.org/wiki/Born–von_Karman_boundary...

    where i runs over the dimensions of the Bravais lattice, the a i are the primitive vectors of the lattice, and the N i are integers (assuming the lattice has N cells where N=N 1 N 2 N 3). This definition can be used to show that (+) = for any lattice translation vector T such that: