Search results
Results from the WOW.Com Content Network
Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.
In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).
If the lattice or crystal is 2-dimensional, the primitive cell has a minimum area; likewise in 3 dimensions the primitive cell has a minimum volume. Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells.
where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called primitive vectors. These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only.
Let ,, be primitive translation vectors (shortly called primitive vectors) of a crystal lattice, where atoms are located at lattice points described by = + + with , , and as any integers. (So x {\displaystyle \mathbf {x} } indicating each lattice point is an integer linear combination of the primitive vectors.)
For face-centered cubic (fcc) and body-centered cubic (bcc) lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic supercell and hence are again simply the Cartesian directions.
Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...
where i runs over the dimensions of the Bravais lattice, the a i are the primitive vectors of the lattice, and the N i are integers (assuming the lattice has N cells where N=N 1 N 2 N 3). This definition can be used to show that (+) = for any lattice translation vector T such that: