Search results
Results from the WOW.Com Content Network
Superfluid vacuum theory (SVT) is an approach in theoretical physics and quantum mechanics where the physical vacuum is viewed as superfluid. [citation needed] The ultimate goal of the approach is to develop scientific models that unify quantum mechanics (describing three of the four known fundamental interactions) with gravity.
Quantum turbulence [1] [2] is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids.The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman.
In a superfluid, a quantum vortex is a hole with the superfluid circulating around the vortex axis; the inside of the vortex may contain excited particles, air, vacuum, etc. The thickness of the vortex depends on a variety of factors; in liquid helium , the thickness is of the order of a few Angstroms .
The superfluid is characterized by long-range phase coherence, a spontaneous breaking of the Hamiltonian's continuous () symmetry, a non-zero compressibility and superfluid susceptibility. At non-zero temperature, in certain parameter regimes a regular fluid phase appears that does not break the U ( 1 ) {\displaystyle U(1)} symmetry and does ...
Second sound is observed in liquid helium at temperatures below the lambda point, 2.1768 K, where 4 He becomes a superfluid known as helium II. Helium II has the highest thermal conductivity of any known material (several hundred times higher than copper). [10] Second sound can be observed either as pulses or in a resonant cavity. [11]
Quantum mechanical effects become significant for physics in the range of the de Broglie wavelength. For condensed matter, this is when the de Broglie wavelength of a particle is greater than the spacing between the particles in the lattice that comprises the matter. The de Broglie wavelength associated with a massive particle is
Close to absolute zero, some liquids form a second liquid state described as superfluid because it has zero viscosity (or infinite fluidity; i.e., flowing without friction). This was discovered in 1937 for helium , which forms a superfluid below the lambda temperature of 2.17 K (−270.98 °C; −455.76 °F).
Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is considered as a superfluid or as a Bose–Einstein condensate (BEC).