Search results
Results from the WOW.Com Content Network
That is, fractions of the form a/10 n, where a is an integer, and n is a non-negative integer. Decimal fractions also result from the addition of an integer and a fractional part; the resulting sum sometimes is called a fractional number. Decimals are commonly used to approximate real numbers.
However, 1 and 15 are not within an order of magnitude, since their ratio is 15/1 = 15 > 10. The reciprocal ratio, 1/15, is less than 0.1, so the same result is obtained. Differences in order of magnitude can be measured on a base-10 logarithmic scale in " decades " (i.e., factors of ten). [ 2 ]
In order to convert a rational number represented as a fraction into decimal form, one may use long division. For example, ... decimal expansion ℓ 10 1 / 32 ...
However, most decimal fractions like 0.1 or 0.123 are infinite repeating fractions in base 2. and hence cannot be represented that way. Similarly, any decimal fraction a/10 m, such as 1/100 or 37/1000, can be exactly represented in fixed point with a power-of-ten scaling factor 1/10 n with any n ≥ m.
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
Sometimes written in the form: m × 10 n. Or more compactly as: 10 n. This is generally used to denote powers of 10. Where n is positive, this indicates the number of zeros after the number, and where the n is negative, this indicates the number of decimal places before the number. As an example: 10 5 = 100,000 [1] 10 −5 = 0.00001 [2]
It is for this reason that many are surprised to discover that 1/10 + ... + 1/10 (addition of 10 numbers) differs from 1 in binary floating point arithmetic. In fact, the only binary fractions with terminating expansions are of the form of an integer divided by a power of 2, which 1/10 is not. The final conversion is from binary to decimal ...
To put in perspective the size of a googol, the mass of an electron, just under 10-30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [5] It is a ratio in the order of about 10 80 to 10 90 , or at most one ten-billionth of a googol (0.00000001% of a googol).