enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    For an ellipse, two diameters are conjugate if and only if the tangent line to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding tangent parallelogram, sometimes called a bounding parallelogram (skewed compared to a bounding rectangle).

  3. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    For an ellipse, two diameters are said to be conjugate if and only if the tangent line to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding tangent parallelogram , sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse ...

  4. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  5. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    There exist 5-point, 4-point and 3-point degenerate cases of Pascal's theorem. In a degenerate case, two previously connected points of the figure will formally coincide and the connecting line becomes the tangent at the coalesced point. See the degenerate cases given in the added scheme and the external link on circle geometries.

  6. Jacobi elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Jacobi_elliptic_functions

    Plot of the Jacobi ellipse (x 2 + y 2 /b 2 = 1, b real) and the twelve Jacobi elliptic functions pq(u,m) for particular values of angle φ and parameter b. The solid curve is the ellipse, with m = 1 − 1/b 2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind (with parameter =). The dotted curve is the unit circle.

  7. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    A similar definition applies to space curves and curves in n-dimensional Euclidean space. The point where the tangent line and the curve meet or intersect is called the point of tangency. The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point.

  8. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    It follows that at least one tangent line to γ must pass through any given point in the plane. If y > x 3 and y > 0 then each point (x,y) has exactly one tangent line to γ passing through it. The same is true if y < x 3 y < 0. If y < x 3 and y > 0 then each point (x,y) has exactly three distinct

  9. Parallel curve - Wikipedia

    en.wikipedia.org/wiki/Parallel_curve

    Thus, the general offset surface shares the same tangent plane and normal with and (()). That aligns with the nature of envelopes. That aligns with the nature of envelopes. We now consider the Weingarten equations for the shape operator , which can be written as ∂ n → = − ∂ x → S {\displaystyle \partial {\vec {n}}=-\partial {\vec {x}}S} .