Search results
Results from the WOW.Com Content Network
Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice. The term serves as an umbrella term for a variety of processes, such as frost shattering, frost wedging, and cryofracturing.
Physical weathering involves the breakdown of rocks into smaller fragments through processes such as expansion and contraction, mainly due to temperature changes. Two types of physical breakdown are freeze-thaw weathering and thermal fracturing. Pressure release can also cause weathering without temperature change.
Freeze–thaw weathering is caused by moisture freezing inside cracks in rock. Upon freezing its volume expands, causing large forces which cracks spall off the outer surface. As this cycle repeats the outer surface repeatedly undergoes spalling, resulting in weathering.
In a felsenmeer or blockfield, freeze-thaw weathering has broken up the top layer of the rock, covering the underlying rock formation with jagged, angular boulders. Freeze-thaw or frost weathering occurs when water that is trapped along microcracks in rock expands and contracts due to fluctuations in temperature above and below the freezing point.
This page was last edited on 24 October 2017, at 07:31 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In addition to chemical and physical weathering of hydraulic action, freeze-thaw cycles, and more, there is a suite of processes which have long been considered to contribute significantly to bedrock channel erosion include plucking, abrasion (due to both bedload and suspended load), solution, and cavitation.
It is a complex of processes that includes freeze–thaw action (weathering by the alternate freezing and melting of ice), mass movement (the downhill movement of substances under gravity), and erosion by meltwater which is the main agent of the surroundings' influence. [5] A seasonal snowpatch on the south east side of Mount Kosciuszko, Australia.
Visible frost damage develops after an accumulation of micro-cracks as a result of several freeze-thaw cycles. [ 1 ] [ 2 ] Frost damage can be prevented by the use of frost-proof materials, i.e. , a material which has sufficient closed pores, by which the volume increase caused by the freezing of water in capillary pores can be absorbed by the ...