Search results
Results from the WOW.Com Content Network
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
Despite consisting mostly of hydrogen and helium, most of Saturn's mass is not in the gas phase, because hydrogen becomes a non-ideal liquid when the density is above 0.01 g/cm 3, which is reached at a radius containing 99.9% of Saturn's mass. The temperature, pressure, and density inside Saturn all rise steadily toward the core, which causes ...
Estimates from an IAU question-and-answer press release from 2006, giving 800 km radius and 0.5 × 10 21 kg mass as cut-offs that normally would be enough for hydrostatic equilibrium, while stating that observation would be needed to determine the status of borderline cases. [50]
The gram (10 −3 kg) is an SI derived unit of mass. However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg.
Saturn – sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius about nine times that of Earth . [ 1 ] [ 2 ] Although only one-eighth the average density of Earth, with its larger volume Saturn is just over 95 times more massive.
NASA's Cassini spacecraft, which explored Saturn and its icy moons, including the majestic Titan, ended its mission with a death plunge into the giant ringed planet in 2017. Cassini's radar ...
The Sun is the Solar System's star and by far its most massive component. Its large mass (332,900 Earth masses), [75] which comprises 99.86% of all the mass in the Solar System, [76] produces temperatures and densities in its core high enough to sustain nuclear fusion of hydrogen into helium. [77]
The solar mass (M ☉), 1.988 92 × 10 30 kg, is a standard way to express mass in astronomy, used to describe the masses of other stars and galaxies. It is equal to the mass of the Sun , about 333 000 times the mass of the Earth or 1 048 times the mass of Jupiter .