Search results
Results from the WOW.Com Content Network
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.
The following example in first-order logic (=) is a sentence. This sentence means that for every y, there is an x such that =. This sentence is true for positive real numbers, false for real numbers, and true for complex numbers. However, the formula
Example. In a given propositional logic, a formula can be defined as follows: Every propositional variable is a formula. Given a formula X, the negation ¬X is a formula. Given two formulas X and Y, and a binary connective b (such as the logical conjunction ∧), the expression (X b Y) is a formula. (Note the parentheses.)
Propositional logic deals with statements, which are defined as declarative sentences having truth value. [29] [1] Examples of statements might include: Wikipedia is a free online encyclopedia that anyone can edit. London is the capital of England. All Wikipedia editors speak at least three languages.
The statement is true if and only if A is false. A slash placed through another operator is the same as ¬ {\displaystyle \neg } placed in front. The prime symbol is placed after the negated thing, e.g. p ′ {\displaystyle p'} [ 2 ]
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables.
In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).