Search results
Results from the WOW.Com Content Network
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.
Technically, Hopf found a many-to-one continuous function (or "map") from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere is mapped from a distinct great circle of the 3-sphere . [1] Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere.
This is the set of points in 3-dimensional Euclidean space found exactly one unit away from the origin. It is called the 2-sphere, S 2, for reasons given below. The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1 ...
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
The Poincaré homology sphere (also known as Poincaré dodecahedral space) is a particular example of a homology sphere. Being a spherical 3-manifold, it is the only homology 3-sphere (besides the 3-sphere itself) with a finite fundamental group. Its fundamental group is known as the binary icosahedral group and has order 120.
The two-dimensional analogue of the Poincaré conjecture says that any two-dimensional topological manifold which is closed and connected but non-homeomorphic to the two-dimensional sphere must possess a loop which cannot be continuously contracted to a point. (This is illustrated by the example of the torus, as above.)
A perspective projection of a sphere onto two dimensions. A sphere in 3-space (also called a 2-sphere because it is a 2-dimensional object) consists of the set of all points in 3-space at a fixed distance r from a central point P. The solid enclosed by the sphere is called a ball (or, more precisely a 3-ball). The volume of the ball is given by