Search results
Results from the WOW.Com Content Network
Simply supported beam with a single eccentric concentrated load. An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find . The reactions at the supports A and C are determined from the balance of forces and moments as
The moment M1, M2, and M3 be positive if they cause compression in the upper part of the beam. (sagging positive) The deflection downward positive. (Downward settlement positive) Let ABC is a continuous beam with support at A,B, and C. Then moment at A,B, and C are M1, M2, and M3, respectively.
This beam has the same length as the real beam and has corresponding supports as listed above. In general, if the real support allows a slope, the conjugate support must develop shear; and if the real support allows a displacement, the conjugate support must develop a moment. The conjugate beam is loaded with the real beam's M/EI diagram.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...
For example, a closet rod sagging under the weight of clothes on clothes hangers is an example of a beam experiencing bending. On the other hand, a shell is a structure of any geometric form where the length and the width are of the same order of magnitude but the thickness of the structure (known as the 'wall') is considerably smaller.
The two equations that describe the deformation of a Timoshenko beam have to be augmented with boundary conditions if they are to be solved. Four boundary conditions are needed for the problem to be well-posed. Typical boundary conditions are: Simply supported beams: The displacement is