Search results
Results from the WOW.Com Content Network
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
The central aspect of Aristotelian logic involves classifying all possible syllogisms into valid and invalid arguments according to how the propositions are formed. [112] [115] For example, the syllogism "all men are mortal; Socrates is a man; therefore Socrates is mortal" is valid. The syllogism "all cats are mortal; Socrates is mortal ...
At present, syllogism is used exclusively as the method used to reach a conclusion closely resembling the "syllogisms" of traditional logic texts: two premises followed by a conclusion each of which is a categorical sentence containing all together three terms, two extremes which appear in the conclusion and one middle term which appears in ...
Depending on the position of the middle term, Aristotle divides the syllogism into three kinds: syllogism in the first, second, and third figure. [14] If the Middle Term is subject of one premise and predicate of the other, the premises are in the First Figure. If the Middle Term is predicate of both premises, the premises are in the Second Figure.
B is the common term between the two premises (the middle term) but is never distributed, so this syllogism is invalid. B would be distributed by introducing a premise which states either All B is Z, or No B is Z. Also, a related rule of logic is that anything distributed in the conclusion must be distributed in at least one premise. All Z is B
The statistical syllogism was used by Donald Cary Williams and David Stove in their attempt to give a logical solution to the problem of induction. They put forward the argument, which has the form of a statistical syllogism: The great majority of large samples of a population approximately match the population (in proportion)
The first type of enthymeme is a truncated syllogism, or a syllogism with an unstated premise. [6] Here is an example of an enthymeme derived from a syllogism through truncation (shortening) of the syllogism: "Socrates is mortal because he's human." The complete formal syllogism would be the classic: All humans are mortal. (major premise ...
But it can be rewritten as a standard form AAA-1 syllogism by first substituting the synonymous term "humans" for "people" and then by reducing the complementary term "immortal" in the first premise using the immediate inference known as obversion (that is, the statement "No humans are immortal." is equivalent to the statement "All humans are ...