enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier ∀ {\displaystyle \forall } in the first order formula ∀ x P ( x ) {\displaystyle \forall xP(x)} expresses that everything in the domain satisfies the property denoted by P ...

  3. Universal quantification - Wikipedia

    en.wikipedia.org/wiki/Universal_quantification

    In symbolic logic, the universal quantifier symbol (a turned "A" in a sans-serif font, Unicode U+2200) is used to indicate universal quantification. It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's (turned E) notation for existential quantification and the later use of Peano's notation by Bertrand Russell.

  4. Category:Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Category:Quantifier_(logic)

    In semantics and mathematical logic, a quantifier is a way that an argument claims that an object with a certain property exists or that no object with a certain property exists. Not to be confused with Category:Quantification (science) .

  5. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...

  6. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics .

  7. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    Due to the ability to speak about non-logical individuals along with the original logical connectives, first-order logic includes propositional logic. [ 7 ] : 29–30 The truth of a formula such as " x is a philosopher" depends on which object is denoted by x and on the interpretation of the predicate "is a philosopher".

  8. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement

  9. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    A (existential second-order) formula is one additionally having some existential quantifiers over second order variables, i.e. …, where is a first-order formula. The fragment of second-order logic consisting only of existential second-order formulas is called existential second-order logic and abbreviated as ESO, as , or even as ∃SO.