Search results
Results from the WOW.Com Content Network
Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols. [ 1 ] Carbonyl reduction, the net addition of H 2 across a carbon-oxygen double bond, is an important way to prepare alcohols.
Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[Al H 4] or LiAlH 4.It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. [4]
Since, aldehydes reduce more easily than ketones, they require milder reagents and milder conditions. At the other extreme, carboxylic acids, amides, and esters are poorly electrophilic and require strong reducing agents. [17] The idealized equation for the reduction of a ketone by sodium borohydride is: 4 RCOR' + NaBH 4 → NaB(OCHRR') 4
The Luche reduction can be conducted chemoselectively toward ketone in the presence of aldehydes or towards α,β-unsaturated ketones in the presence of a non-conjugated ketone. [5] An enone forms an allylic alcohol in a 1,2-addition, and the competing conjugate 1,4-addition is suppressed.
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.
Ethylene glycol protects a ketone (as an acetal) during an ester reduction, vs. unprotected reduction to a diol. A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction.
Sodium borohydride and lithium aluminium hydride are commonly used for the reduction of organic compounds. [3] [4] These two reagents are on the extremes of reactivity—whereas lithium aluminium hydride reacts with nearly all reducible functional groups, sodium borohydride reacts with a much more limited range of functional groups.
The Nozaki–Hiyama–Kishi reaction is a nickel/chromium coupling reaction forming an alcohol from the reaction of an aldehyde with an allyl or vinyl halide. [1] In their original 1977 publication, Tamejiro Hiyama and Hitoshi Nozaki [2] reported on a chromium(II) salt solution prepared by reduction of chromic chloride by lithium aluminium hydride to which was added benzaldehyde and allyl ...