enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frequency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Frequency_(statistics)

    A histogram is a representation of tabulated frequencies, shown as adjacent rectangles or squares (in some of situations), erected over discrete intervals (bins), with an area proportional to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency ...

  3. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The total area of a histogram used for probability density is always normalized to 1. If the length of the intervals on the x-axis are all 1, then a histogram is identical to a relative frequency plot. Histograms are sometimes confused with bar charts. In a histogram, each bin is for a different range of values, so altogether the histogram ...

  4. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    For a set of empirical measurements sampled from some probability distribution, the Freedman–Diaconis rule is designed approximately minimize the integral of the squared difference between the histogram (i.e., relative frequency density) and the density of the theoretical probability distribution.

  5. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R , [ 2 ] Python [ 3 ] and Microsoft Excel where it is the default bin selection method.

  6. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  7. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    where () and () represent the frequency and the relative frequency at bin and = = is the total area of the histogram. After this normalization, the n {\displaystyle n} raw moments and central moments of x ( t ) {\displaystyle x(t)} can be calculated from the relative histogram:

  8. Entropy estimation - Wikipedia

    en.wikipedia.org/wiki/Entropy_estimation

    The histogram is itself a maximum-likelihood (ML) estimate of the discretized frequency distribution [citation needed]), where is the width of the th bin. Histograms can be quick to calculate, and simple, so this approach has some attraction.

  9. Cumulative frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Cumulative_frequency_analysis

    Cumulative frequency distribution, adapted cumulative probability distribution, and confidence intervals. Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance.