Search results
Results from the WOW.Com Content Network
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure, V is volume, n is the polytropic index, and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.
In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. An isochoric process is exemplified by the heating or the cooling of the contents of a sealed ...
A polytropic process, in particular, causes changes to the system so that the quantity is constant (where is pressure, is volume, and is the polytropic index, a constant). Note that for specific polytropic indexes, a polytropic process will be equivalent to a constant-property process.
Neutron stars are well modeled by polytropes with index between n = 0.5 and n = 1. A polytrope with index n = 1.5 is a good model for fully convective star cores [5] [6] (like those of red giants), brown dwarfs, giant gaseous planets (like Jupiter). With this index, the polytropic exponent is 5/3, which is the heat capacity ratio (γ) for ...
A polytropic process is a thermodynamic process that obeys the relation: P V n = C , {\displaystyle PV^{\,n}=C,} where P is the pressure, V is volume, n is any real number (the "polytropic index"), and C is a constant.
The equal sign refers to a reversible process, which is an imagined idealized theoretical limit, never actually occurring in physical reality, with essentially equal temperatures of system and surroundings. [10] [11] For an isentropic process, if also reversible, there is no transfer of energy as heat because the process is adiabatic; δQ = 0 ...
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).
The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston is easily calculated. For example, if the gas expands slowly against the piston, the work done by the gas to raise the piston is the force F times the distance d .