enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Synthetic biodegradable polymer - Wikipedia

    en.wikipedia.org/.../Synthetic_biodegradable_polymer

    That is, the polymer is unstable in a water based environment. This is the prevailing mechanism for the polymers degradation. This occurs in two stages. 1. Water penetrates the bulk of the device, attacking the chemical bonds in the amorphous phase and converting long polymer chains into shorter water-soluble fragments.

  3. Vinyl polymer - Wikipedia

    en.wikipedia.org/wiki/Vinyl_polymer

    Vinyl polymers are subject of several structural variations, which greatly expands the range of polymers and their applications. With the exception of polyethylene, vinyl polymers can arise from head-to-tail linking of monomers, head-to-head combined with tail-to-tail, or a mixture of those two patterns. Additionally the substituted carbon center in such polymers is stereogenic (a "chiral center")

  4. Biopolymer - Wikipedia

    en.wikipedia.org/wiki/Biopolymer

    Gelatin polymer is often used on dressing wounds where it acts as an adhesive. Scaffolds and films with gelatin allow for the scaffolds to hold drugs and other nutrients that can be used to supply to a wound for healing. As collagen is one of the more popular biopolymers used in biomedical science, here are some examples of their use:

  5. Reversible addition−fragmentation chain-transfer polymerization

    en.wikipedia.org/wiki/Reversible_addition%E2%88...

    Specific materials and their applications include polymer-protein and polymer-drug conjugates, mediation of enzyme activity, molecular recognition processes and polymeric micelles which can deliver a drug to a specific site in the body. [19] RAFT has also been used to graft polymer chains onto polymeric surfaces, for example, polymeric ...

  6. Biodegradable plastic - Wikipedia

    en.wikipedia.org/wiki/Biodegradable_plastic

    The biodegradable polymers used in biomedical applications typically consist of hydrolyzable esters and hydrazones. These molecules, upon external stimulation, go on to be cleaved and broken down. The cleaving activation process can be achieved through use of an acidic environment, increasing the temperature, or by use of enzymes. [82]

  7. Polymeric surface - Wikipedia

    en.wikipedia.org/wiki/Polymeric_surface

    The modification of surfaces to keep polymers biologically inert has found wide uses in biomedical applications such as cardiovascular stents and in many skeletal prostheses. Functionalizing polymer surfaces can inhibit protein adsorption, which may otherwise initiate cellular interrogation upon the implant, a predominant failure mode of ...

  8. Ethylene-vinyl acetate - Wikipedia

    en.wikipedia.org/wiki/Ethylene-vinyl_acetate

    EVA is also used in biomedical engineering applications as a drug-delivery device. The polymer is dissolved in an organic solvent (such as dichloromethane). Powdered drug and filler (typically an inert sugar) are added to the liquid solution and rapidly mixed to obtain a homogeneous mixture.

  9. Chain-growth polymerization - Wikipedia

    en.wikipedia.org/wiki/Chain-growth_polymerization

    It is one of the most developed methods in chain-growth polymerization. Currently, most polymers in our daily life are synthesized by free radical polymerization, including polyethylene, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyacrylonitrile, polyvinyl acetate, styrene butadiene rubber, nitrile rubber, neoprene, etc.