Search results
Results from the WOW.Com Content Network
Population, community, and physiological ecology provide many of the underlying biological mechanisms influencing ecosystems and the processes they maintain. Flowing of energy and cycling of matter at the ecosystem level are often examined in ecosystem ecology, but, as a whole, this science is defined more by subject matter than by scale.
Although ecosystems are most commonly categorized by their structure and geography, there are also other ways to categorize and classify ecosystems such as by their level of human impact (see anthropogenic biome), or by their integration with social processes or technological processes or their novelty (e.g. novel ecosystem).
Ecosystems may be habitats within biomes that form an integrated whole and a dynamically responsive system having both physical and biological complexes. Ecosystem ecology is the science of determining the fluxes of materials (e.g. carbon, phosphorus) between different pools (e.g., tree biomass, soil organic material).
A pyramid of biomass shows the relationship between biomass and trophic level by quantifying the biomass present at each trophic level of an ecological community at a particular time. It is a graphical representation of biomass (total amount of living or organic matter in an ecosystem) present in unit area in different trophic levels.
That is, the consumer trophic level is one plus the weighted average of how much different trophic levels contribute to its food. In the case of marine ecosystems, the trophic level of most fish and other marine consumers takes a value between 2.0 and 5.0.
Ecological classification or ecological typology is the classification of land or water into geographical units that represent variation in one or more ecological features. . Traditional approaches focus on geology, topography, biogeography, soils, vegetation, climate conditions, living species, habitats, water resources, and sometimes also anthropic factors.
Each level in the hierarchy represents an increase in organisational complexity, with each "object" being primarily composed of the previous level's basic unit. [2] The basic principle behind the organisation is the concept of emergence —the properties and functions found at a hierarchical level are not present and irrelevant at the lower levels.
Among aquatic and terrestrial ecosystems, patterns have been identified that can account for this variation and have been divided into two main pathways of control: top-down and bottom-up. [22] [23] The acting mechanisms within each pathway ultimately regulate community and trophic level structure within an ecosystem to varying degrees. [24]