Ads
related to: planck's law color temperature chart led lights for home
Search results
Results from the WOW.Com Content Network
The mathematical procedure for determining the correlated color temperature involves finding the closest point to the light source's white point on the Planckian locus. Since the CIE's 1959 meeting in Brussels, the Planckian locus has been computed using the CIE 1960 color space , also known as MacAdam's (u,v) diagram. [ 6 ]
[3] [4] [5] In practice, light sources that approximate Planckian radiators, such as certain fluorescent or high-intensity discharge lamps, are assessed based on their CCT, which is the temperature of a Planckian radiator whose color most closely resembles that of the light source. For light sources that do not follow the Planckian distribution ...
Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source.
LED-B1 0.4560: 0.4078 2733 phosphor-converted blue LED-B2 0.4357: 0.4012 2998 phosphor-converted blue LED-B3 0.3756: 0.3723 4103 phosphor-converted blue LED-B4 0.3422: 0.3502 5109 phosphor-converted blue LED-B5 0.3118: 0.3236 6598 phosphor-converted blue LED-BH1 0.4474: 0.4066 2851 mixing of phosphor-converted blue LED and red LED (blue-hybrid ...
According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = where k B is the Boltzmann ...
The Planckian locus on the MacAdam (u, v) chromaticity diagram. The normals are lines of equal correlated color temperature. The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.
For a black body, Planck's law gives: [8] [11] = where (the Intensity or Brightness) is the amount of energy emitted per unit surface area per unit time per unit solid angle and in the frequency range between and +; is the temperature of the black body; is the Planck constant; is frequency; is the speed of light; and is the Boltzmann constant.
Color temperatures and example sources Temperature Source 1700 K Match flame, low pressure sodium lamps (LPS/SOX) 1850 K Candle flame, sunset/sunrise: 2400 K Standard incandescent lamps: 2550 K Soft white incandescent lamps 2700 K "Soft white" compact fluorescent and LED lamps 3000 K Warm white compact fluorescent and LED lamps 3200 K
Ads
related to: planck's law color temperature chart led lights for home