enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Trachtenberg system. The Trachtenberg system is a system of rapid mental calculation. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. It was developed by the Russian engineer Jakow Trachtenberg in order to keep his mind occupied while being in a Nazi concentration camp.

  3. Dadda multiplier - Wikipedia

    en.wikipedia.org/wiki/Dadda_multiplier

    The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. [1] It uses a selection of full and half adders to sum the partial products in stages (the Dadda tree or Dadda reduction) until two numbers are left. The design is similar to the Wallace multiplier, but the different reduction tree ...

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.

  5. Generator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Generator_(mathematics)

    Generator (mathematics) The 5th roots of unity in the complex plane under multiplication form a group of order 5. Each non-identity element by itself is a generator for the whole group. In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that ...

  6. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Let λ be a root of this polynomial (in the polynomial representation this would be x), that is, λ 8 + λ 4 + λ 3 + λ + 1 = 0. Now λ 51 = 1, so λ is not a primitive element of GF(2 8) and generates a multiplicative subgroup of order 51. [5] The monic irreducible polynomial x 8 + x 4 + x 3 + x 2 + 1 over GF(2) is primitive, and all 8 roots ...

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [1][2][3] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most single-digit ...

  8. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    The Mandelbrot set (/ ˈmændəlbroʊt, - brɒt /) [1][2] is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified. It is popular for its aesthetic appeal and fractal structures. The set is defined in the complex plane as the complex numbers for which the function does not ...

  9. Multiply–accumulate operation - Wikipedia

    en.wikipedia.org/wiki/Multiply–accumulate...

    Multiply–accumulate operation. In computing, especially digital signal processing, the multiply–accumulate (MAC) or multiply-add (MAD) operation is a common step that computes the product of two numbers and adds that product to an accumulator. The hardware unit that performs the operation is known as a multiplier–accumulator (MAC unit ...