Search results
Results from the WOW.Com Content Network
Nikolai Pavlovich Petrov's method of lubrication analysis, which assumes a concentric shaft and bearing, was the first to explain the phenomenon of bearing friction.This method, which ultimately produces the equation known as Petrov's law (or Petroff's law), is useful because it defines groups of relevant dimensionless parameters, and predicts a fairly accurate coefficient of friction, even ...
Most roller bearings only take radial or axial loads, but tapered roller bearings support both radial and axial loads, and generally can carry higher loads than ball bearings due to greater contact area. Tapered roller bearings are used, for example, as the wheel bearings of most wheeled land vehicles.
Figure 1 Hard wheel rolling on and deforming a soft surface, resulting in the reaction force R from the surface having a component that opposes the motion. (W is some vertical load on the axle, F is some towing force applied to the axle, r is the wheel radius, and both friction with the ground and friction at the axle are assumed to be negligible and so are not shown.
A ball bearing. A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts.The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts.
Therefore, the part of the shaft in contact with the bearing slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.g., a drawer and the slides it rests on [3] or the ways on the bed of a lathe.
It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.
This theory is exact for the situation of an infinite friction coefficient in which case the slip area vanishes, and is approximative for non-vanishing creepages. It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact.
Alternatively, the Hersey number is the dimensionless number obtained from the velocity (m/s) times the dynamic viscosity (Pa∙s = N∙s/m2), divided by the load per unit length of bearing (N/m). Thus, for a given viscosity and load, the Stribeck curve shows how friction changes with increasing velocity.