Search results
Results from the WOW.Com Content Network
Statistical assumptions can be put into two classes, depending upon which approach to inference is used. Model-based assumptions. These include the following three types: Distributional assumptions. Where a statistical model involves terms relating to random errors, assumptions may be made about the probability distribution of these errors. [5]
A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems ; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms ...
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. [1]
The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in applied mathematics and in the natural sciences (such as physics , biology , earth science , chemistry ) and engineering disciplines (such as computer science , electrical engineering ), as well as in non-physical systems such as the ...
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. [1] Specific mathematical techniques that are commonly used in statistics include mathematical analysis , linear algebra , stochastic analysis , differential equations , and ...
Standard linear regression models with standard estimation techniques make a number of assumptions about the predictor variables, the response variable and their relationship. Numerous extensions have been developed that allow each of these assumptions to be relaxed (i.e. reduced to a weaker form), and in some cases eliminated entirely.
The assumptions underlying a t-test in the simplest form above are that: X follows a normal distribution with mean μ and variance σ 2 /n. s 2 (n − 1)/σ 2 follows a χ 2 distribution with n − 1 degrees of freedom. This assumption is met when the observations used for estimating s 2 come from a normal distribution (and i.i.d. for each group).